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We do a direct two-dimensional finite-elment simulation of the Navier-Stokes 
equations and compute the forces which turn an ellipse settling in a vertical channel of 
viscous fluid in a regime in which the ellipse oscillates under the action of vortex 
shedding. Turning this way and that is induced by large and unequal values of negative 
pressure at the rear separation points which are here identified with the two points on 
the back face where the shear stress vanishes. The main restoring mechanism which 
turns the broadside of the ellipse perpendicular to the fall is the high pressure at the 
‘stagnation point’ on the front face, as in potential flow, which is here identified with 
the one point on the front face where the shear stress vanishes. 

1. Introduction 
Joseph et al. (1987) and Fortes, Joseph & Lundgren (1987) discovered that the basic 

mechanisms controlling the motion and interactions of spherical bodies at moderate 
Reynolds numbers are associated with wakes and turning couples on long bodies. This 
was described by them as drafting, kissing and tumbling. Particles align in wakes and 
are sucked together. Kissing spheres aligned with the stream are unstable and tumble 
into arrangements in which the average orientation of lines between centres is across 
the stream. Hu, Joseph & Crochet ( 1 9 9 2 ~ )  did a direct numerical simulation of 
unsteady two-dimensional solid-liquid two-phase flows using the Navier-Stokes 
equations for the liquid and Newton’s equations of motion for the circular particles. 
Their numerical analysis reveals the effects of vortex shedding on the motion of the 
cylinders and reproduces the drafting, kissing, and tumbling scenario which is the 
dominant rearrangement mechanism in two-phase flow of solids and liquids in beds of 
large spheres that are constrained to move in only two dimensions. Hu, Joseph & 
Fortes (1992b) used the finite-element method to directly simulate the settling of an 
ellipse in a two-dimensional vertical channel. They constructed a video animation of 
the motion of the ellipse. The numerical results show that at moderately high Reynolds 
numbers, the particle rocks periodically in the channel. They tried to explain the 
turning mechanism by the high pressures at the front stagnation points as in potential 
flow. However, the pressure distribution on the particle surface in potential flow is not 
sufficient to explain the turning of the particles. 

The settling of an ellipse in a viscous fluid is not a potential flow at the Reynolds 
number 60 used in the simulation. Wake effects are important; there is no pressure 
recovery and large negative pressures near the long ends of the ellipse where vortex 
shedding occurs can be even larger than the high pressures at the front. All these 
features appear in the simulation of Hu et al. (1992b), but the following questions not 
answered there are answered here: What is a ‘stagnation point’ in a viscous flow? 
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What is the distribution of shear stresses on the body of the ellipse? How are the 
separate torques per unit area of the surface due to pressure and to the shear stress 
distributed on the surface of the ellipse? What are the torque resultants? How does the 
pressure distribution on the back of the body control the rocking motion when there 
is vortex shedding? 

In order to understand the driving and resisting forces on an ellipse settling and 
turning in a fluid, we calculate the stress distributions and the torque distributions on 
the particle surface. To do this, we had to enhance the numerical code used by Hu 
et al. (1992~) to compute torques due to pressures and viscous tractions. This is done 
in three steps. First we search for elements which have nodes on the particle surface and 
interpolate the velocity field to get the strain rate field in these elements. Then we set 
up a calculation procedure which gives the stress tensor on each node belonging to the 
particle surface. Finally the forces and torques on every segment of the surface can be 
evaluated and the total force and turning couple can be obtained. 

We find that the torques due to the viscous shear stresses play an important role in 
resisting the turning of an ellipse but the dominant torques are due to three extreme 
values of the pressure which are here identified with negative pressures at two 
separation points on the back face and a positive pressure at a ‘stagnation point’ at the 
front face where the shear stress vanishes. Stagnation pressure always acts to put the 
broadside of the ellipse perpendicular to the fall, as in potential flow, but with the 
added caveats that in the viscous case the restoring mechanism acts only on the front 
face and the stagnation point is near the unique point at which the shear stress passes 
through zero. The negative pressure at the separation points sustains the periodic 
oscillation in both the particle position and its orientation. 

2. Basic equations 
Hu et al. (1992a), and Feng, Hu & Joseph (1994) have computed the velocity and 

pressure fields for the fluid caused by a settling elliptic particle in a vertical channel. The 
same procedure is used in our computation, which is briefly described in the following. 

Consider a two-dimensional flow in an infinite vertical channel of width w. The fluid 
in the channel is assumed to be Newtonian and incompressible with density pf and 
viscosity ,q. 0, is the domain occupied by the fluid, r, is its boundary. The velocity 
u(x,t) and the pressure p(x,t) in the fluid are governed by the Navier-Stokes 

on O,, V t  > 0, 

equations : 

v - u  = 0 

where g is the gravity vetor and Q is the stress tensor given by 
def 

Q = -pl + T = --pl +pf[Vu + ( V U ) ~ ] .  

The velocity u satisfies no-slip conditions on the particle and at the walls of the channel. 
The position of the solid elliptic particle sedimenting in the vertical channel can be 

determined by the coordinate of its centre X =  (X, Y )  and the turning angle ap. The 
equation governing the motion of the particle is Newton’s Law: 
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FIGURE 1. Triangle element e with three vertex nodes (iJ, k) and three midpoints. 

where m is the mass of the elliptic particle and 1 is the moment of the inertia of the 
particle; U(t) = dX(t)/dt is the velocity of the centre of the elliptic particle; 
Q(t) = da,(t)/dt is the angular velocity of the particle; F is the total force that the 
fluid exerts on the ellipse and F, is the total torque around the centre of the ellipse. 

The motion of the fluid and the motion of the solid elliptic particle are coupled. The 
fluid exerts forces and torques on the particle, thus changing the motion of the particle. 
At the same time, the motion of the solid elliptic particle induces flow by changing the 
position of the boundary and the velocities on the boundary. 

Hu et al. (1992a) developed an explicit-implicit scheme to solve the motion of the 
elliptic particle. This scheme uses an explicit method to update the position of the 
particle and an implicit method to update the velocity of the particle. The updated 
position and velocity of the particle are used to update the boundary condition for the 
fluid equations. The nonlinear Navier-Stokes equations are solved by a finite-element 
package (POLYFLOW) which uses the Newton iterations to get the velocity and pressure 
distributions in fluid on the updated domain 52, subject to the updated boundary 
condition. The particle is then moved again by the explicit-implicit scheme and the 
procedure is repeated for the next time step. 

In order to get the forces and torques exerted on the surface of the solid elliptic 
particle, Hu et al. (1992a) used a Gauss integral formula, 

where w is a vector-valued weighting function that is zero everywhere except on the 
boundary of the particle r. One can let w = w1 i for computing & and w = w j  for 
computing 4, where w1 and w2 are unity at the nodes on r a n d  zero at any other nodes. 
By considering different weighting vectors w in this way and using numerical 
integration, they obtained a force, 

F = & i + G j  = Ir.-ndr, 

acting on the solid particle. In the present paper we compute the forces and moments 
directly from the local velocity field. The numerical method is given in the next section. 
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3. Numerical analysis 
We use the same governing equations for the motion of the fluid and the elliptic 

particle as those in Hu et al. (1992a). What we need to add now are direct calculations 
of the surface stresses and the torques due to pressure and viscous tractions. As the first 
step in the description of these procedures, we show how we interpolate the velocity in 
the elements which have at least one node lying on the surface of the particles. Then 
the strain rate tensor and stress tensor can be computed on the surface nodes. 

3.1. Interpolation of velocity 

Suppose that element e has at least one node on the particle surface. In figure 1, the 
velocity field inside the element can be approximated by second-order interpolation 
using the values of velocity ue at the 6 nodes: 

where the shape functions N,(x,y) are given as 

Here A, are the area coordinates defined by 

a, + bi x + c i y  
2Ae 

A .  = , i =  1,2,3, 

where 2Ae= det 1 x p  y z  , [: 1: 111 

N ,  0 N ,  0 N ,  0 N4 0 N5 0 N6 
Let N = [  Nl 0 N ,  0 N3 0 N4 0 N5 0 N6 

then (1) can be expressed as 
U =  NV.  

3.2. Stress tensor on a surface node 

The components of the strain-rate tensor are 
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so we can write 

... 0 

aY 
0 0 -  aN, . . .  

laN6 laN, ... -~ -~ 
i c ? ~ ,  i a ~ ,  i a ~ ,  i a ~ ~  

-__ ___ -__ 
2 ax 2 ay 2 ax 2 ay 2 ax 

Then the strain-rate tensor for any position (x,y) in the element e is given by 

+ 4@, ug + b, u, + b, us) A, - (b, u, + b, u, + b, u,)], ( 4 4  

1 
24 Diy = 7 [4(C,211+ C 2  V,j + C3 2)s) A, + 4(C, 216 + C z  0, + C3 Uq) A, 

+4(c ,~ ,+c ,~ ,+c ,v , )~ , - ( c ,~ ,+c ,~ ,+c ,~3)1 ,  ( 4 b )  

1 
4 4  D& = 7 [4(b, ~ 1 +  b z ~ ,  + 63 Y ,  + c1 U 1  + c2 U ,  + c3 us) A, 

+4(b, u, + b, v, +b, 21, + c1 u, + c, u, + c, u,) A, +4(b, 21, +b, uq +b, u ,  

+ c, ug + cz u4 + c3 us) A,-@, v, +b,v, +b, 21, + c1 U] + c, u,+ , u,)]. ( 4 4  

Suppose that there are Nk elements which share the same node k on the particle 
surface, as shown in figure 2. The strain-rate tensor in each element contributes to the 
velocity gradient at node k ,  and the arithmetic average from all Nk elements is taken 
as the velocity gradient at node k .  We write the stress tensor for this node as 

3.3 .  Pressure and stress torques on a particle surface 
After computing the stress tensor and pressure distribution at every node on the 
particle surface we can calculate the viscous part of the normal stress and the shear 
stress. The torques due to the pressure and the viscous stresses can then be obtained 
through the following steps. 
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FIGURE 2. 
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Particle surface node k and the N ,  elements surrounding it. 

FIGURE 3. Coordinates of the surface of the ellipse. The x-axis is along the wall of the channel. 
P(X,, q) is the centre of the ellipse and k is the node on the surface. aP is the turning angle of the 
ellipse, r = (x: +yLz)i is the distance between node k and the center p .  a, and b, are the arms of the 
forces 4 and 4. 

(i) In figure 3 ,  the transformation of coordinates from x,y to x’,y’ is given by 

x’ = (x-Xt)sinap-(j- T)cosap, 

y’ = ( x - ~ ~ ) c o s a , + ~ , -  q)sinap.j  
1 

(ii) In the x’,y’ system, the equation for the ellipse surface is 

, , x‘2 y‘2 
F ( x , Y ) = - + - - ~  = O  

a’ b2 

and the unit outer normal vector is n = VF//IVFI. 
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FIGURE 4. (a) Snapshots of the motion of the ellipse from rest to periodic oscillation. (b) Snapshots 
of the motion of the ellipse in one whole cycle. This cycle covers time steps from itime = 232 to 264. 

230 235 240 245 250 255 260 265 
itime 

FIGURE 5. Real time at different time steps covered in one cycle of oscillation. 

For a surface node k at (xk, yk), the unit normal vector n = (cos a, sin a) and the unit 
tangential vector t = (-sin a, cos a), where the angle a can be calculated by 

(iii) In the x,y system, the unit nornal vector is n = (cosp, sinp), the unit tangential 
vector is t = (- sin p, cos /I), where /3 = a + ap -in. 
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(iv) The viscous force 

where d A  is the area of a region composed of one half of the two segments on both 
sides of node k :  

d A  = %Xk + ( Y k  - Y k - J " ~  +%%+I - X k I 2  + ( Y k f l  -YJ21i .  (8) 

Here we assume constant pressure p and viscous stress tensor Tin the region d A .  The 
shear force then is given by 

= [ - (rxx cos /? + r,zu sin /?) sin p + (rxy cos p + rug sin p) cos p] d A .  (9) 

The normal stress r,, = n. T - n  = 0 on the surface of a moving body. This can be 
readily seen by noting that on a rigid surface, the tangential gradient of the tangential 
velocity is zero, and by the no-slip condition and continuity, the normal gradient of the 
normal velocity in the fluid has to be zero. 

(v) The pressure torque and viscosity torque can be calculated by 

where 

4. Results and discussion 
Our computations are based on the flow field (velocities and pressure) and particle 

motion simulated by the POLYFLOW code. The fluid is water, pf =. 1.0 g cm-l and 
vf = 0.01 cm2 s-I. The major axis of the ellipse is a = 0.1 cm; the ratio of major axis 
to minor axis is k = a/b  = 2. The density of the solid particle is ps = 1.5 g cmb3. The 
width of the channel is 4a. Initially the ellipse is at rest at the centre of the channel with 
its major axis parallel to the channel walls. It then starts to settle under gravity. The 
terminal mean sedimenting velocity is about V = 5.6 cm s-l and the Reynolds number 
Re = Va/vf  = 56. The inflow boundary of the computational domain is placed 1Oa 
ahead of the ellipse and the outflow boundary is placed 1% behind of the ellipse. The 
surface of the ellipse is divided into 24 to 30 segments, the total number of nodes is 
between 2250 and 2500, depending on the computational domain. We computed 270 
time steps. The ellipse's motion can be seen from the snapshots shown in figure 4(a). 
For the analysis of turning couples, we choose one cycle as in figure 4(b). The time 
interval At is determined by the computer at each time step, and figure 5 gives the 
correspondence between this time, which we denote 'itime', and the real time in the 
cycle shown in figure 4(b). The frequency of oscillation gives a Strouhal number 
St = 0.187, which is close to the value St = 0.21 7 at Re = 155 which we measured in an 
experiment in which a round cylinder with hemispherical ends oscillates as it falls in a 
water-filled sedimentation channel with close sidewalls. The experimental results will 
be reported in another publication. Contours of isobars, streamlines and iso-vorticity 
lines are shown in figures 6(a), 6(b) and 6(c) respectively. 
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FIGURE 7. The shear stress vanishes at the stagnation points corresponding to dividing streamlines. 
(a) ap = 0: the ellipse is horizontal; (b) ap > 0: the ellipse tilts up on the right; ( c )  up < 0: the ellipse 
tilts down on the right. 
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-21 ' ' ' ' 

8 (deg-1 

FIGURE 8. Shear-stress distribution on the ellipse for a motion cycle with time steps from 
itime = 232 to 264. The unit of the shear stress is dyne cm-'. 
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FIGURE 9. Torque distribution due to shearing on the ellipse for a motion cycle with time steps 
from itime = 232 to 264. The unit of the torque is dyne. 

4.1. Shear stress and position of stagnation and separation points 
In potential flows, the stagnation points are the points on the surface of the solid 
particle where the velocities of the fluid and the solid particle are the same. Since the 
fluid slips, all such points are on dividing streamlines. In viscous flow, this definition 
does not hold because the velocities of the fluid and the particle are the same at all 
points of the surface of the body. Therefore, we need a new definition for the viscous 
case. A little thought is required to convince oneself that 'stagnation points' ought to 
be the limits of dividing streamlines, a point of separation where the shear stress 
vanishes. We shall show that even in the viscous case, the pressure is nearly maximum 
at a point on the front face of the ellipse where the shear stress vanishes. 
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FIGURE 10. Pressure distribution on the ellipse for a motion cycle with time steps from 

itime = 232 to 264. The unit of the pressure is dyne cm-'. 

Figure 7 shows a cartoon of the ellipse in three different orientations and the position 
of the stagnation point on the forward face of the ellipse is clearly marked. The 
stagnation point is the place on the front face where the shear stress r,(H) goes through 
zero. In figure 8 we have plotted 7,(8) for different times. The stagnation points 
oscillate about 8 = 270". The other points at which r,(8) vanishes correspond to points 
of separation on the back of the ellipse. In figure 9 we have plotted the torque T, due 
to the shear stress. Naturally points at which r, vanishes have a vanishing contribution 
to the torque. The contributions of the shear stress to the torque are negative in the 
interval of 8 between the front stagnation point and the first separation point (near 
8 = 0') on the back face. 

The shear stresses arise from the translation and rotation of the ellipse. An 
important effect of viscosity is associated with the shedding of vortices at the back of 
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FIGURE 11. Pressure torque distribution on the ellipse surface for a motion cycle with time steps 
from itime = 232 to 264. The unit of the torque is dyne. 

the ellipse. These shedding events are accompanied by high negative pressures which 
swing the ellipse periodically from side to side (figure 10). No matter how these 
negative pressures swing the ellipse, they are resisted from further turning by the 
stagnation pressure on the front side. The high negative pressures cannot dominate 
because they are relieved periodically by vortex shedding. 

4.2. Pressure 
Figure 10 shows the distribution of the pressure on the ellipse. The pressure is highest 
near the stagnation points where 7, = 0 (cf. figure 8). The pressure is positive on the 
front surface (0 = 180"-360") and negative on the rear surface (8  = 0"-180"). The 
pressure distribution is asymmetric as a result of tilting and unsteady motion. From the 
diagrams we can see that the pressure distribution is asymmetric at itime = 232, 248, 
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a* 
FIGURE 12. Total torque distribution due to pressure on the ellipse for a motion cycle with time 

steps from itime = 232 to 264. The unit of the torque is dyne. 

264 although the ellipse is horizontal for those time steps, but at itime = 241 when the 
particle is tilted, the pressure distribution is somewhat symmetric. 

The effect of vortex shedding is demonstrated to be the cause of the rocking motion. 
At itime = 232, a vortex is being discharged from the left back of the ellipse (figure 6b) .  
This increases the pressure around 8 = 0", and the unbalance between the negative 
pressures on the back surface of the ellipse at 8 = 0" and 8 = 180" turns the ellipse 
counter-clockwise, although the front stagnation pressure (at I9 z 300") attempts to 
keep the major axis horizontal. At itime = 248, a vortex is being discharged from the 
right back of the ellipse, and this gives a higher pressure around I9 = 180" which turns 
the ellipse clockwise, again against the will of the front stagnation pressure. 

The torque distribution due to pressure is shown in figure 11. There are at least five 
points on the body where Tp = 0. On the four points I9 = 0" (360"), 90", 180", 270", the 
pressure points to the centre of the ellipse so that the moment arm is zero. On other 
points, the pressure goes to zero. 

The total pressure torque C Tp varies periodically, and it is correlated to the 
orientation of the ellipse a? as shown in figure 12. The difference in E between time 
steps itime = 232 and 247 is the result of fluid inertia. In both cases, the major axis of 
the particle is roughly horizontal but the particle is turning in different directions. At 
itime = 237-239 and itime = 253-255, the ellipse has achieved the maximum tilt and 
the total pressure torque C T p  forces the ellipse to turn the other way, although there 
is some hesitation due to particle and fluid inertia. At itime = 237-239, Z Tp < 0 and 
the pressure turns the ellipse clockwise. At itime = 253-255, C T, > 0 and the pressure 
turns the ellipse counterclockwise. In conclusion, the pressure torque depends on the 
orientation of the particle and is always such as to turn the broadside of the ellipse 
perpendicular to the flow. 

4.3. Torque due to viscous tractions 
The total viscous torque C T, can tell us in which direction the ellipse is turning. In 
figure 13, the value of the total viscous torque is basically correlated to the rotation of 
the ellipse. From time step itime = 239 to 253, the particle is turning clockwise (ap 
decreasing) and the total viscous torque C T, > 0 is in the counterclockwise direction. 
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FIGURE 13. Total torque distribution due to viscosity on the ellipse for a motion cycle with time 
steps from itime = 232 to 264. The unit of the torque is dyne. 

From time step itime = 254 to 264 and from itime = 232 to 237, the particle is turning 
counterclockwise (ap increasing) and I: < 0 is in the clockwise direction. Therefore, 
viscous torque resists the turning of the ellipse most of the time. This is consistent 
with the intuition that the shear stress is caused by and counters the particle 
motion/rotation. 

One can find, however, exceptions to this correlation. During time steps itime = 236, 
237 and 238, the ellipse is attaining maximum tilt and its angular velocity is 
approaching zero (as a result of the front stagnation pressure). The fluid adjacent to 
the solid surface does not stop moving as readily because of inertia, and its motion 
gives rise to a positive viscous torque which is in the same direction as the rotation for 
a brief moment. Then the rotation reverses and the viscous torque again resists the 
rotation. A similar sequence of event exists between itime = 253 and 254. 

Finally we note that the magnitude of the total viscous torque is about one order of 
magnitude smaller than the pressure torque, and therefore does not affect the principal 
features of the sedimentation. 

5 .  Conclusion 
Torques due to high pressures at the stagnation points (where the shear stress 

vanishes) on the front face of the ellipse always act to turn the broad side of the ellipse 
into the stream in a manner reminiscent of potential flow. Points of separation in the 
‘dead water’ region on the back of the ellipse are the sites of vortex shedding which 
rocks the ellipse. Viscous torque caused by shear stress on the particle surface resists 
the motion, but does not alter the basic features of the motion determined by the high 
pressures at the stagnation and separation points. 
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US Army, Mathematics and AHPCRC, and by the DOE, Department of Basic Energy 
Sciences and the Minnesota Supercomputer Institute. We wish to thank Dr Howard 
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